Abstract

The study was designed to investigate temporal and spatial seasonal variations in quality properties of gravity flow water samples collected from Kigata, Kacuro, Kihanga, Kitibya and Kanjobe located in Kyanamira Sub-County, Kabale District, Uganda. Physical, chemical and biological parameters such as pH, temperature, dissolved oxygen, total dissolved solids, electrical conductivity, turbidity, colour and total suspended solids, total hardness, total alkalinity, chloride, fluoride, nitrates-N, nitrites-N, ammonium-N, sulphates, total phosphate, sodium, calcium, magnesium and some heavy metals were analyzed. Total iron, lead, chromium, copper, zinc, manganese and cadmium were analyzed by atomic absorption spectrometry. Two of the basic biological parameters for drinking water such as faecal coliforms and salmonella were analyzed by incubation followed by counting colony forming units (CFUs). Statistical presentations of data including cluster analysis, dendrograms and principal component analysis were used with the assistance of PAST software. Temperature, pH, TDS dissolved oxygen, cations, anions (chemical parameters) and salmonella, faecal coliforms were the major contributing parameters to gravity flow water’s quality variations during both seasons. Values of pH ranged between 3.78 and 4.84 from March to August in all study sites and they were consistently below the WHO permissible pH range of 6.5 - 8.5. Total suspended solids ranged between 0.66 and 2.17 mg·L-1 and were above the recommended WHO limit of zero value in all study sites. Salmonella and faecal coliforms colonies were present in scaring numbers in the wet season. In March, salmonella counts at Kacuro (14 CFU) and Kanjobe (128 CFU) while faecal coliforms counts at Kacuro (515 CFU) and Kanjobe (228 CFU). The findings of this study call for special attention when using gravity flow water.

Highlights

  • Achieving efficient and cost effective water treatment methods is key for human survival and development, water management is a current global concern (Juneja and Chaudhary, 2013) [1]

  • The study was designed to investigate temporal and spatial seasonal variations in quality properties of gravity flow water samples collected from Kigata, Kacuro, Kihanga, Kitibya and Kanjobe located in Kyanamira Sub-County, Kabale District, Uganda

  • This study showed how the quality of gravity flow water used for all domestic activities and agriculture is affected in Kabale District, Uganda

Read more

Summary

Introduction

Achieving efficient and cost effective water treatment methods is key for human survival and development, water management is a current global concern (Juneja and Chaudhary, 2013) [1]. Gravity flow water is groundwater which has been diverted and piped to nearby communities to sustain all human activities, in hilly areas like in Kigezi highlands, Uganda. Pollutants which do not break down may infiltrate and accumulate in groundwater aquifers and eventually make their way into groundwater plumes which feed gravity flow water sources. Groundwater is found in weathered portions, along the joints and fractures of the rocks (Rajappa et al, 2011) [3] from where it flows by means of gravity. Groundwater is developed into gravity flow water in hilly areas and piped to the community living within a handy radius from the main source. Water flow is maintained by the force of gravity and pressure generated as a product of height of water in reservoir x density of water x gravitational force (hρg) in the tank

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.