Abstract

The characterization of a radiographic imaging system response in terms of spatial and temporal resolution is a very important task that allows the determination of this system limits and capability in the investigation and visualization of very fast processes and of very small spatial details. Thus, the spatial and temporal resolutions limits are very important parameters of an imaging system that should be taken into consideration before the examination of any static object or dynamic process. The objectives of this chapter are the study and determination of radiation imaging system response in terms of spatial and temporal resolution limits and the application of super-resolution (SR) methods and algorithms to improve the resolution of captured neutron images or video sequences. The imaging system taken as example and being studied is a high-sensitivity neutron imaging system composed of an LiF+ZnS scintillator screen (0.25 mm thick), an Aluminium-coated mirror and a Charged Coupled Device (CCD) camera (2x10-5 lx at F1.4).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call