Abstract
Space and time-resolved electron density and temperature of the plasma, created in air by focused femtosecond laser pulses have been investigated as a function of the pump pulse energy and duration. For the air ionization the infrared (1030 nm) femtosecond (190–500 fs) Yb:KGW laser pulses of up to 1 mJ energy were used. Based on the Stark broadening of the oxygen-I 777.19 nm line we have found that after establishing a local equilibrium the density of laser-created plasma could exceed 1017 cm−3 with the electron temperature of over 5000 °C. Obtained results agree well with the results of previously reported measurements of the plasma density created by the femtosecond near-infrared Ti:sapphire laser pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.