Abstract

We hypothesized that electrocardiogram (ECG) spatial phase analysis would define a spectrum of intracardiac organization from atrial fibrillation (AF), nonisthmus-dependent and isthmus-dependent atrial flutter (AFL) to supraventricular tachycardias (SVT), and similarly for ventricular arrhythmias. We analyzed arrhythmia ECGs of 33 patients with isthmus (n = 9) and nonisthmus (n = 5) dependent AFL and SVT: atrial (n = 3), atrioventricular nodal (n = 3), and orthodromic reciprocating (n = 3) tachycardias, as well as AF (n = 5), ventricular tachycardia (monomorphic, VT-MM; n = 7), and fibrillation (VF; n = 3). ECG spatial phase was considered coherent when the correlation coefficient of an atrial (or ventricular) template to its ECG over time maintained a constant relationship in XY, XZ, and YZ planes. Regularity was quantified spectrally from ECG and correlation series. Spatial coherence occurred in 9/9 cases of isthmus--but only 1/5 of cases of nonisthmus-dependent AFL (p < 0.01; chi2). All showed one dominant spectral peak (temporal coherence). In AF, spatial phase was inconsistent in all planes and spectra were broad band. Temporal and spatial coherence occurred in other SVT. VT-MM maintained spatial phase and a single spectral peak, while VF displayed neither. Our conclusions are that temporal and spatial phase analysis from the ECG stratifies intra-atrial and intra-ventricular organization and reveals subtle variability lost on visual inspection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call