Abstract

Revealing the spatial-temporal pattern of extreme heat on staple crops is crucial for proposing adaptation strategies to mitigate climate change-related agricultural risks. Studies in this field generally focus on the reproductive stage and rely on a single-staged threshold temperature to construct extreme heat indicators, which particularly neglect the vegetative stage of wheat. Therefore, to measure the extreme heat risks more scientifically across the entire life cycle of wheat, our study defines a new comprehensive extreme heat index (CEHI) that considers specific thresholds in both the reproductive and vegetative stages. In general, under three climate scenarios (RCP2.6, RCP4.5, and RCP8.5), approximately 20 % of the wheat-planting regions in China, especially in winter wheat regions such as the North China Plain, the Sichuan Basin, and the Xinjiang Tarim Basin, are projected to face high levels of extreme heat. Meanwhile, from 2010 to 2099, the average growth rates of extreme heat in China under RCP2.6, RCP4.5, and RCP8.5 scenarios are approximately 0.08, 0.06, and 0.1, respectively. By the century's end, the proportion of wheat-planting regions experiencing high and very high levels (CEHI≥0.4) of extreme heat is projected to increase from 18.0 %, 17.9 %, and 18.4 % to 21.4 %, 25.1 %, and 28.9 % under RCP2.6, RCP4.5, and RCP8.5 scenarios. Among them, RCP8.5 has the highest extreme heat severity on wheat in China, followed by RCP4.5, while RCP2.6 has minimal severity. Under the RCP8.5 scenario, the proportions of very high, high, moderate, low, and very low levels of extreme heat are 3.4 %, 18.5 %, 16.7 %, 14.9 %, and 46.5 %, respectively. Meanwhile, our study also emphasizes that although higher-latitude spring wheat regions will experience a significantly increasing trend in extreme heat, this may not spell long-term damage to wheat. Therefore, with consideration of varied temperature sensitivities across wheat growth stages, our study indicates that CEHI serves as an effective method to comprehensively and scientifically assess extreme heat on wheat. Furthermore, based on the regional and varietal differences in extreme heat under climate change, our study highlights the importance of developing region- and variety-specific policies to ensure the sustainability of wheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.