Abstract
Key components of the basal transcription machinery and several tissue-specific transcription factor complexes are functionally compartmentalized as specialized subnuclear domains. We have identified a unique 31-38 amino acid targeting signal (NMTS) that directs the Runx (Cbfa/AML) transcription factors to distinct nuclear matrix-(NM) associated sites within the nucleus that support gene expression. Our determination of the NMTS crystal structure, yeast 2 hybrid screens to identify NM interacting proteins, and in situ colocalization studies with Runx interacting factors (YAP, Smad, TLE) suggest that localization of Runx transcription factors at intranuclear sites facilitates the assembly and activity of regulatory complexes that mediate activation and suppression of target genes. Mice homozygous for the deletion of the intranuclear Runx2 targeting signal in a homologous recombination (Runx2 j C) do not form bone due to maturational arrest of osteoblasts, demonstrating the importance of fidelity of subnuclear localization for tissue-differentiating activity. These results provide evidence that Runx2 subnuclear targeting and the associated regulatory functions are essential for a spatiotemporal placement that facilitates activation of Runx-dependent genes involved in tissue differentiation during embryonic development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.