Abstract

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call