Abstract

Carbon utilization efficiency (CUE) in terrestrial ecosystems stands as a pivotal metric for assessing ecosystem functionality. Investigating the spatiotemporal dynamics of regional CUE within the context of global climate change not only provides a theoretical foundation for understanding terrestrial carbon cycling but also furnishes essential data support for formulating sustainable management strategies at a regional scale. This study focuses on the southeastern region of Tibet. Utilizing monthly and yearly MOD17A2HGF as primary sources, we employ Thiel–Sen estimation and Mann–Kendall trend analysis to scrutinize the spatiotemporal dynamics of CUE. Systematic analysis of the stability of CUE spatiotemporal changes in the Southeast Tibet region is conducted using the coefficient of variation analysis. The Hurst model is then applied to prognosticate future CUE changes in Southeast Tibet. Additionally, a comprehensive analysis of CUE is undertaken by integrating meteorological data and land-use data. The findings reveal the following: (1) At the monthly scale, regional CUE exhibits discernible variations synchronized with the growth season, with different vegetation types displaying diverse fluctuation patterns. The high-altitude forest area manifests the least annual CUE fluctuations, while evergreen needleleaf forests and evergreen broadleaf forests demonstrate larger variations. At the yearly scale, CUE reveals a non-significant upward trend overall, but there is an augmented fluctuation observed from 2019 to 2022. (2) CUE in Southeast Tibet demonstrates sensitivity to temperature and precipitation variations, with temperature exhibiting a more pronounced and strongly correlated impact, especially in Gongjo County and Qamdo Town. Temperature and precipitation exert opposing influences on CUE changes in the Southeast Tibet region. In the southern (below 28° N) and northern (above 31° N) regions of Southeast Tibet, the response of CUE to temperature and precipitation variations differs. Moreover, over 62.3% of the areas show no sustained trend of change. (3) Vegetation type emerges as a principal factor determining the scope and features of vegetation CUE changes. Grassland and sparse grassland areas exhibit markedly higher CUE values than evergreen broadleaf forests, deciduous broadleaf forests, evergreen needleleaf forests, and deciduous needleleaf forests. Notably, the CUE fluctuation in shrublands and areas with embedded farmland vegetation surpasses that of other vegetation types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call