Abstract

Based on 2005-2020 O3 column concentration data of OMI remote sensing satellite, combined with air pollutant data from 10 nationally controlled environmental automatic monitoring stations in the Hexi Corridor and global data assimilation system meteorological data, we used Kriging interpolation, correlation analysis, and backward trajectory (HYSPLIT) models to explore the temporal and spatial distribution characteristics, meteorological factors, transmission paths, and potential sources of O3 in the Hexi Corridor. The results showed the following:① in terms of temporal distribution, O3 column concentration showed an upward trend in 2005-2010 and 2014-2020 and downward trend in 2010-2014; the maximum and minimum values were reached in 2010 and 2014 (332.31 DU and 301.00 DU), respectively, and seasonal changes showed that those in spring and winter were significantly higher than those in summer and autumn. ② In terms of spatial distribution, O3 column concentration showed a latitudinal band distribution characteristic of increasing from southwest to northeast; the high-value areas were primarily distributed in urban areas with low terrain, and the median zone was latitudinally striped with the basic alignment of the Qilian foothills. ③ The analysis of meteorological conditions revealed that temperature, wind speed, and sunshine hours were positively correlated with O3, and relative humidity was negatively correlated with O3. ④ By simulating the airflow transportation trajectory of the receiving point in Wuwei City, it was found that the direction of the O3 conveying path was relatively singular; the dominant airflow in each season was primarily in the west and northwest; and the proportions were 71.62%, 66.85%, 61.22%, and 77.78%, respectively. There were certain seasonal differences in the source areas of O3 potential contribution:the high-value areas of O3 potential sources in spring, summer, and autumn were distributed in Baiyin City and Lanzhou City, which were southeast wind sources, and the high-value areas in winter were distributed between the Badain Jaran Desert and the Tengger Desert, which was the north wind source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call