Abstract

Although the effects of Delta(9)-tetrahydrocannabinol (THC) on ovarian physiology have been known for many decades, its mechanism of action in the rat ovary remains poorly understood. The effects of THC and endocannabinoids on many cell types appear to be mediated through the G-protein-coupled CB(1) and CB(2) receptors. Evidence also suggests that the concentration of the endocannabinoid anandamide is regulated by cellular fatty acid amide hydrolase (FAAH). Therefore, we examined the rat ovary for the presence of CB(1) and CB(2) receptors and FAAH. The CB(1) receptor was present in the ovarian surface epithelium (OSE), the granulosa cells of antral follicles, and the luteal cells of functional corpus luteum (CL). The granulosa cells of small preantral follicles, however, did not express the CB(1) receptor. Western analysis also demonstrated the presence of a CB(1) receptor. In both preantral and antral follicles, the CB(2) receptor was detected only in the oocytes. In the functional CL, the CB(2) receptor was detected in the luteal cells. FAAH was codistributed with CB(2) receptor in both oocytes and luteal cells. FAAH was also present in the OSE, subepithelial cords of the tunica albuginea (TA) below the OSE, and in cells adjacent to developing preantral follicles. Western analysis also demonstrated the presence of FAAH in oocytes of both preantral and antral follicles. Our observations provide potential explanation for the effects of THC on steroidogenesis in the rat ovary observed by earlier investigators and a role for FAAH in the regulation of ovarian anandamide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.