Abstract
The temporal and spatial distribution of heat flux within counter-oscillating slugs of fluid, along which is maintained a constant axial temperature gradient, is examined. It is found that the resultant axial heat flux pulsates at twice the base oscillation frequency and that the time-averaged axial heat flow under tuned conditions is orders of magnitude larger than that present in the absence of oscillations. Such thermal pumping is produced by the time-dependent interaction of a transverse conduction flux, produced by large transverse temperature gradients, with the periodic axial fluid motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.