Abstract

The chromophoric dissolved organic matter (CDOM), the main component of dissolved organic matter, affects the morphological characteristics, migration, and conversion of pollutants in water. Based on UV-vis spectra and excitation emission matrix spectroscopy (EEMs) combined with the parallel factor analysis (PARAFAC), the spatial distribution and spectral characteristics were investigated and source analysis of CDOM was performed. Thus, the spatiotemporal differences in the CDOM in Gangnan Reservoir were analyzed. Results showed that a254, a260, a280, and a355 exhibited significant seasonal differences in Gangnan Reservoir, and the order of CDOM concentrations was summer > spring > autumn > winter. There are significant seasonal differences in the E2/E3, E3/E4, E4/E6, and SR of interstitial water CDOM. The concentrations of E2/E3, E3/E4, E4/E6, and SR were high in winter and low in summer. E2/E3 and E3/E4 in autumn and winter were significantly higher than those in spring and summer, and the E3/E4 in autumn and winter was greater than 3.5, which indicates that the CDOM of the autumn and winter sediments has a smaller molecular weight and a lower degree of humification. Protein-like substances (C1), short-wave fulvic acid (C2), and degraded humic substances (C3) were identified by the PARAFAC model, and there was a significant positive correlation among the three fluorescent components (P<0.001). The total fluorescence intensity of CDOM and the fluorescence intensity of each fluorescent component show significant seasonal differences. The total fluorescence intensity and the fluorescence intensity of each component show the highest levels in spring, followed by autumn and winter, and the lowest levels in summer. The proportion of each fluorescent component in autumn and winter and that of each fluorescent component in spring and summer showed no significant difference. There was a significant difference in the proportion of each fluorescent component between autumn/winter and spring/summer. The BIX and FI of CDOM for autumn and winter were higher than those for spring and summer, indicating that the autogenous source of CDOM in autumn and winter is stronger than that in spring and summer, which was consistent with the result of HIX. PCA and Adonis analysis showed that the spectral characteristics of CDOM exhibited obvious seasonal differences (P<0.001). Moreover, the C1, C2, and C3 and water quality parameters (NH4+, NO3-, NO2-, TDN, and TDP) exhibited significant correlation based on linear regression. The results could provide technical support for the control of organic carbon pollution sources and water quality management in Gangnan Reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call