Abstract
Quinolinic acid (QUIN) is an endogenous neurotoxin which originates from the kynurenine pathway of tryptophan metabolism. An increase of brain QUIN level occurs in several degenerative and inflammatory disorders, but the cellular source of QUIN is still a matter of controversy. In the present study, the gerbil model of transient global ischemia was used to investigate the time course and the cellular localization of QUIN immunoreactivity. Neurodegeneration was evident in the subiculum and in the CA1 area of the hippocampus 4, 7 and 14 days after ischemia. QUIN positive cells, with microglia-like morphology, appeared in the subiculum and in the CA1, 4 days after ischemia. At 7 days post-ischemia they extended to the whole CA1, disappearing at 14 days. Neither neurodegeneration nor QUIN positive cells could be detected in ischemic gerbils sacrificed at 1 and 2 days after ischemia and in sham-operated animals. These findings suggest that microglia-like cells infiltrating the degenerating areas of the hippocampus represent the major source of QUIN following transient ischemia in the gerbil. Thus, in situ production of QUIN in vulnerable brain regions may contribute to the pathophysiological mechanisms of delayed brain injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.