Abstract

BackgroundSudden temperature change may elevate short-term mortality and remains an important global health threat in the context of climate change. To date, however, little available temperature-mortality evidence has taken into account both intra- and inter-day temperature variability (TV), thus largely limiting the comprehensive understanding of mortality burden due to unstable weather. Moreover, seasonal and temporal patterns in TV-mortality associations were sparsely discussed, nationally and regionally. ObjectivesWe aimed to assess the nationwide association of all-cause mortality with hourly temperature variability (HTV), quantify HTV-attributable mortality, and further explore the temporal and seasonal variations of mortality burden due to HTV in United Kingdom. MethodsFourteen-year time-series data on temperature and mortality were collected from 10 regions in England and Wales during 1993–2006, totally including 7,573,716 all-cause deaths. HTV was calculated from the standard deviation of hourly temperature records within two neighboring days. A three-stage analytic approach was adopted to assess HTV-associated mortality burden. We first applied a time-series quasi-Poisson regression to estimate region-specific HTV-mortality associations, then pooled these associations at the national level using a multivariate meta-analysis, and finally estimated the HTV-attributable mortality fraction and illustrated its seasonal and temporal variations by conducting season- and period-specific analyses based on time-varying distributed lag models. ResultsWe found strong evidence that large HTV exposure elevated short-term mortality risk in England and Wales, with a pooled estimate of 1.13% (95% confidence interval (CI): 0.88, 1.39) associated with a 1-°C increase in HTV. During the whole study period, HTV accounted for a national average attributable fraction of 2.52% (95% empirical confidence interval (eCI): 2.27, 2.76) of the total deaths. This HTV-attributable mortality estimate showed a significant temporal decrease (p < 0.001) from 2.72% (95% eCI: 2.58, 2.87) in 1993–99 to 2.28% (95% eCI: 2.13, 2.43) in 2000–06. Additionally, clear seasonal variations were observed for HTV-attributable mortality burden, with the largest estimate of 3.08% (95% eCI: 2.80, 3.38) in summer, followed by 2.71% (95% eCI: 2.44, 2.98) in spring, 2.40% (95% eCI: 2.16, 2.63) in autumn, and 2.00% (95% eCI: 1.81, 2.20) in winter. ConclusionsDespite clear evidence observed for the reduction, mortality burden caused by temperature variability remained a great public health threat, especially in warm seasons. It highlighted the importance of specific interventions targeted to unstable weather as well as temperature extremes, so as to reduce climate-related mortality burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call