Abstract

Auditory feedback (AF) plays a critical role in vocal learning. Previous studies in songbirds suggest that low-frequency (<~1kHz) components may be salient cues in AF. We explored this with auditory stimuli including the bird's own song (BOS) and BOS variants with increased relative power at low frequencies (LBOS). We recorded single units from BOS-selective neurons in two forebrain nuclei (HVC and Area X) in anesthetized zebra finches. Song-evoked responses were analyzed based on both rate (spike counts) and temporal coding of spike trains. The BOS and LBOS tended to evoke similar spike-count responses in substantially overlapping populations of neurons in both HVC and Area X. Analysis of spike patterns demonstrated temporal coding information that discriminated among the BOS and LBOS stimuli significantly better than spike counts in the majority of HVC (94%) and Area X (85%) neurons. HVC neurons contained more and a broader range of temporal coding information to discriminate among the stimuli than Area X neurons. These results are consistent with a role of spike timing in coding differences in the spectral components of BOS in HVC and Area X neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call