Abstract

Spike-and-wave discharges (SWDs) and sleep spindles are characteristic electroencephalographic (EEG) hallmarks of absence seizures and nonrapid eye movement sleep, respectively. They are commonly generated by the cortico-thalamo-cortical network including the thalamic reticular nucleus (TRN). It has been reported that SWD development is accompanied by a decrease in sleep spindle density in absence seizure patients and animal models. However, whether the decrease in sleep spindle density precedes, coincides with, or follows, the SWD development remains unknown. To clarify this, we exploited Pvalb-tetracycline transactivator (tTA)::tetO-ArchT (PV-ArchT) double-transgenic mouse, which can induce an absence seizure phenotype in a time-controllable manner by expressing ArchT in PV neurons of the TRN. In these mice, EEG recordings demonstrated that a decrease in sleep spindle density occurred 1 week before the onset of typical SWDs, with the expression of ArchT. To confirm such temporal relationship observed in these genetic model mice, we used a gamma-butyrolactone (GBL) pharmacological model of SWDs. Prior to GBL administration, we administered caffeine to wild-type mice for 3 consecutive days to induce a decrease in sleep spindle density. We then administered low-dose GBL, which cannot induce SWDs in normally conditioned mice but led to the occurrence of SWDs in caffeine-conditioned mice. These findings indicate a temporal relationship in which the decrease in sleep spindle density consistently precedes SWD development. Furthermore, the decrease in sleep spindle activity may have a role in facilitating the development of SWDs. Our findings suggest that sleep spindle reductions could serve as early indicators of seizure susceptibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.