Abstract

We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment. The energy and peak intensity thresholds required for cell poration with single pulse in the nJ range can be significantly reduced (25% reduction in energy and 88% reduction in peak intensity) by using temporal Airy pulses, controlled by positive third order dispersion, as compared to bandwidth limited pulses. Temporal Airy pulses are also effective to control the morphology of the induced pores, with prospective applications from cellular to tissue opto-surgery and transfection.

Highlights

  • We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment

  • The energy and peak intensity thresholds required for cell poration with single pulse in the nJ range can be significantly reduced (25% reduction in energy and 88% reduction in peak intensity) by using temporal Airy pulses, controlled by positive third order dispersion, as compared to bandwidth limited pulses

  • We investigated the influence of the femtosecond laser pulse shapes on the induced surface damages on adherent cervix cancer cell line (HeLa) on glass immersed in water

Read more

Summary

Introduction

We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment. Germany (Received 2 February 2016; accepted 18 April 2016; published online 24 June 2016)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.