Abstract

The market for on-demand mobility services is growing worldwide. These services include, for example, ride-hailing, ride-sharing, and car-sharing. Large-scale fleets of such services collect GPS trajectory (probe vehicle) data constantly everywhere in the network. At a certain penetration rate, this data becomes representative of the entire road network. It can give valuable insights into traffic dynamics and the evolution of congestion. In this paper, we use such GPS trajectory data from Chengdu, China, to investigate the stability and recurrence of macroscopic traffic patterns. Using the two-fluid theory, we find that the two-fluid coefficients are robust on between-day variation, not only supporting the theory itself but also emphasizing that the general evolution of traffic is a robust pattern. We investigate the deviations from the model using time series analysis of the residuals of the two-fluid model. Here, we find evidence for daily and weekly seasonality in the residuals, indicating that congestion patterns are convincingly recurring. These patterns can be used for network-wide traffic state prediction. We conclude that GPS trajectory data from large on-demand mobility fleets is a promising data source for observing traffic patterns in urban road networks once the data becomes representative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.