Abstract
When the complexity of a problem rises, its solution requires more hardware resources. A usual way to solve this is to use larger processors and add more memory. When using Field Programmable Gate-Arrays (FPGAs), which can instantiate arbitrary circuit designs, a larger, more costly and power hungry chip is used. In this paper we propose a different approach, namely to split the problem into a graph of interdependent smaller tasks and to reconfigure a small FPGA during runtime to execute each of these tasks efficiently sequentially. This can result in cheaper and more energy efficient systems that can execute very complex problems locally. We present a basic analytical model, evaluate its accuracy and discuss initial insight from it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.