Abstract

Obstructive sleep apnea (OSA) has been demonstrated to be implicated in disorder of insulin secretion and diabetes mellitus. In this study, we aimed to evaluate the protective role of tempol, a powerful antioxidant, in chronic intermittent hypoxia (IH)-induced pancreatic injury. The rat model of OSA was established by IH exposure. The pathological changes, increased blood-glucose level, and raised proinsulin/insulin ratio in pancreatic tissues of rats received IH were effectively relieved by tempol delivery. In addition, the enhanced levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta, IL-6, and inflammatory mediators, PGE2, cyclooxygenase-2 (COX-2), NO, and inducible nitric oxide synthase (iNOS) in pancreatic tissue were suppressed by tempol. Moreover, tempol inhibited IH-induced apoptosis in pancreatic tissue as evidenced by upregulated Bcl-2 level, and downregulated Bax and cleaved caspase-3 levels. Finally, the abnormal activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling pathways induced by IH was restrained by tempol administration. In summary, our study demonstrates that tempol relieves IH-induced pancreatic injury by inhibiting inflammatory response and apoptosis, which provides theoretical basis for tempol as an effective treatment for OSA-induced pancreatic injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.