Abstract

Inadequacies in stratigraphic resolution or completeness can make true rates of morphologic change through geologic time impossible to estimate precisely. However, relative rates may be sufficient to test whether the tempo of change within species can account for morphologic differences across species boundaries, and hence to distinguish between gradual and punctuated patterns of evolution. The conditions under which these patterns can be distinguished statistically are explored by simulating varying degrees of within-species rate variability relative to across-species morphologic difference. The statistical methods are then applied to multiple-character morphologic data from closely spaced sequential populations of the Neogene bryozoan Metrarabdotos, using discriminant analysis to compare overall morphologies. In nine comparisons of ancestor-descendant species pairs, all show within-species rates of morphologic change that do not vary significantly from zero, hence accounting for none of the across-species difference. In all cases the ratio of within-species fluctuation to across-species difference is low enough to allow the punctuated pattern to be distinguished with virtual certainty. In at least seven of the cases, ancestor species persisted after giving rise to descendants, in conformity with the punctuated equilibrium mode of evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.