Abstract
Temporality has significantly contributed to various Natural Language Processing and Information Retrieval applications. In this article, we first create a lexical knowledge-base in Hindi by identifying the temporal orientation of word senses based on their definition and then use this resource to detect underlying temporal orientation of the sentences. To create the resource, we propose a semi-supervised learning framework, where each synset of the Hindi WordNet is classified into one of the five categories, namely, past , present , future , neutral , and atemporal . The algorithm initiates learning with a set of seed synsets and then iterates following different expansion strategies, viz. probabilistic expansion based on classifier’s confidence and semantic distance based measures. We manifest the usefulness of the resource that we build on an external task, viz. sentence-level temporal classification. The underlying idea is that a temporal knowledge-base can help in classifying the sentences according to their inherent temporal properties. Experiments on two different domains, viz. general and Twitter, show interesting results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.