Abstract

A 300-bp DNA sequence has been determined for 30 (10 from each of three species of mice) random isolates of a subset of the long interspersed repeat family L1. From these data we conclude that members of the L1 family are evolving in concert at the DNA sequence level in Mus domesticus, Mus caroli, and Mus platythrix. The mechanism responsible for this phenomenon may be either duplicative transposition, gene conversion, or a combination of the two. The amount of intraspecies divergence averages 4.4%, although between species base substitutions accumulate at the rate of approximately 0.85%/Myr to a maximum divergence of 9.1% between M. platythrix and both M. domesticus and M. caroli. Parsimony analysis reveals that the M. platythrix L1 family has evolved into a distinct clade in the 10-12 Myr since M. platythrix last shared a common ancestor with M. domesticus and M. caroli. The parsimony tree also provides a means to derive the average half-life of L1 sequences in the genome. The rates of gain and loss of individual copies of L1 were estimated to be approximately equal, such that approximately one-half of them turn over every 3.3 Myr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.