Abstract

This paper addresses empirically and theoretically a question derived from the chunking theory of memory (Chase & Simon, 1973a, 1973b): To what extent is skilled chess memory limited by the size of short-term memory (about seven chunks)? This question is addressed first with an experiment where subjects, ranking from class A players to grandmasters, are asked to recall up to five positions presented during 5 s each. Results show a decline of percentage of recall with additional boards, but also show that expert players recall more pieces than is predicted by the chunking theory in its original form. A second experiment shows that longer latencies between the presentation of boards facilitate recall. In a third experiment, a Chessmaster gradually increases the number of boards he can reproduce with higher than 70% average accuracy to nine, replacing as many as 160 pieces correctly. To account for the results of these experiments, a revision of the Chase–Simon theory is proposed. It is suggested that chess players, like experts in other recall tasks, use long-term memory retrieval structures (Chase & Ericsson, 1982) or templates in addition to chunks in short-term memory to store information rapidly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.