Abstract
We present a template‐free synthesis of Fe3O4/SiOC(H) nanocomposites with in situ formed Fe3O4 nanoparticles with a size of about 50 nm embedded in a nanoporous SiOC(H) matrix obtained via a polymer‐derived ceramic route. Firstly, a single‐source precursor (SSP) was synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with Fe‐acetylacetonate [Fe(acac)3] at 140°C. The SSP was heat‐treated at 170°C to generate Fe3O4 nanocrystals in the cross‐linked polymeric matrix. Subsequently, the SSP was pyrolyzed at 600°C–700°C in argon atmosphere to yield porous Fe3O4/SiOC(H) nanocomposites with the high BET surface area up to 390 m2/g, a high micropore surface area of 301 m2/g, and a high micropore volume of 0.142 cm3/g. The Fe‐free SiOC(H) ceramic matrix derived from original AHPCS is nonporous. The in situ formation of Fe3O4 nanoparticles embedded homogeneously within a nanoporous SiOC(H) matrix shows significantly enhanced catalytic degradation of xylene orange in aqueous solution with H2O2 as oxidant as compared with pure commercial Fe3O4 nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.