Abstract

Volvox-like Cdx Zn1-x S solid solutions with a cubic zinc blend structure were synthesized through a template-free ethylene glycol process. Cd(Ac)2 ⋅2 H2 O, Zn(Ac)2 ⋅2 H2 O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox-like spherical geometry, but also exerted vigorous domination for existence of cubic-phase Cdx Zn1-x S nanostructures. As-prepared volvox-like Cdx Zn1-x S nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible-light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m(2) g(-1) ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call