Abstract
Purpose The purpose of this paper is to seek a surfactant or template-free, simple and green method to fabricate NiO nanobelts and to find an effective technique to detect the ethanol vapor at room temperature. Design/methodology/approach NiO nanobelts with high aspect ratio and dispersive distribution have been synthesized by a template-free hydrothermal reaction at 160°C for 12 h. The products are studied by X-ray diffraction (XRD), energy dispersive spectroscopY, scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, selective area electron diffractio and X-ray photoelectron spectroscopy. In particular, the room-temperature ethanol sensitivity of NiO nanobelts is investigated by the surface photo voltage (SPV) technique. Findings The prepared NiO nanobelts is single crystalline bunsenite structure with the length of approximately 10 μm and the diameter of approximately 30 nm. The atomic ratio of “Ni” to “O” is 0.92:1. When the concentration of ethanol vapor reaches 100 ppm, the sensitivity of NiO nanobelts is 7, which can meet the commercial demanding of ethanol gas sensor. Originality/value The NiO nanobelts can be obtained by a template-free, simple and green hydrothermal reaction at 160°C for 12 h. The NiO nanobelts-based gas sensor is a promising candidate for the application in ethanol monitoring at room temperature by SPV technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.