Abstract

Metal-organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as-prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as-fabricated MOF materials. We were able to obtain discrete rod-shaped TMV@MOF core-shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core-shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call