Abstract

Simple and reliable mass production of platinum-based alloy catalysts with excellent activity and stability is an enormous challenge for the wide commercialization of proton-exchange membrane fuel cells (PEMFC), especially those with ultralow loading of Pt. Herein, an economical, highly durable, and efficient catalyst consisting of structurally ordered intermetallic Pt3Co alloy nanoparticles with ultralow Pt loading (1.4 wt %) supported on hierarchically porous carbon structure (three-dimensional, 3D Pt3Co/C) were synthesized with large-scale production by the NaCl-template-assisted approach. The obtained best sample, 3D Pt3Co/C#1, exhibited mass activities of 11.56 and 0.70 A mgPt-1 for oxygen reduction reactions (ORRs) in alkaline and acidic electrolytes, which are 60.8 and 6.4 times those of commercial Pt/C, respectively. Furthermore, the 3D Pt3Co/C#1 exhibited excellent stability both in acidic and alkaline electrolytes, with almost no decay of the half-wave potential after 5000 potential cycles. This work proposes a new high-yielding, simple, and environmentally friendly method to fabricate excellent Pt-based alloy electrocatalysts with ultralow loading of Pt, which opens up new hopes for the development of PEMFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call