Abstract

Atomically precise bottom-up synthesized graphene nanoribbons (GNRs) are promising candidates for next-generation electronic materials. The incorporation of these highly tunable semiconductors into complex device architectures requires the development of synthetic tools that provide control over the absolute length, the sequence, and the end groups of GNRs. Here, we report the living chain-growth synthesis of chevron-type GNRs (cGNRs) templated by a poly-(arylene ethynylene) precursor prepared through ring-opening alkyne metathesis polymerization (ROAMP). The strained triple bonds of a macrocyclic monomer serve both as the site of polymerization and the reaction center for an annulation reaction that laterally extends the conjugated backbone to give cGNRs with predetermined lengths and end groups. The structural control provided by a living polymer-templated synthesis of GNRs paves the way for their future integration into hierarchical assemblies, sequence-defined heterojunctions, and well-defined single-GNR transistors via block copolymer templates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.