Abstract

Covalent organic frameworks (COFs) hold great promise for electrochemical energy storage because of their high surface area, readily accessible redox-active sites, and environment-friendly chemical composition. In this study, the synthesis of a redox-active pyrene-containing polyimide COF (PICOF-1) by linker exchange using an imine-linked COF as a template is reported and its performance in sodium-ion batteries (SIBs) is demonstrated. The reported synthetic route based on linker exchange mitigates the challenges typically encountered with crystallizing chemically stable polyimide COFs from typical condensation reactions; thus, facilitating their rapid synthesis and purification. Using this approach, PICOF-1 exhibits high crystallinity with very low refinement parameters RP and RWP of 0.415% and 0.326%, respectively. PICOF-1 has a high Brunauer-Emmette-Teller (BET) surface area of 924m2 g-1 and well-defined one-dimentional (1D) channels of 2.46×1.90nm, which enable fast ion transport and charge transfer, reaching a capacity at 0.1C of almost nearly as its theoretical capacity and maintaining 99% Coulombic efficiency over 175 cycles at 0.3C. The study demonstrates that imine-linked COFs are effective templates for integrating carbonyl-rich polyimide moieties into high-surface COFs to advance electrochemical energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.