Abstract

Native chemical ligation (NCL) is a powerful method for the convergent synthesis of proteins and peptides. In its original format, NCL between a peptide containing a C-terminal thioester and another peptide offering an N-terminal cysteine has been used to enable protein synthesis of unprotected peptide fragments. However, the applications of NCL extend beyond the scope of protein synthesis. For instance, NCL can be put under the control of template molecules. In such a scenario, NCL enables the design of conditional reaction systems in which, peptide bond formation occurs only when a specific third party molecule is present. In this review, we will show how templates can be used to control the reactivity and chemoselectivity of NCL reactions. We highlight peptide and nucleic-acid-templated NCL reactions and discuss potential applications in nucleic acid diagnosis, origin-of-life studies and gene-expression-specific therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.