Abstract

A novel "sink and etch" technique is used to generate stable surface nanoporosity in poly(methyl methacrylate). Layer-by-layer assembly is first used to conformally coat PMMA substrates with a uniform layer of silica nanoparticles. Thermal annealing is then applied to cause sinking and engulfment of the silica nanoparticles into the thermoplastic PMMA surface. By selectively etching away the layer of embedded silica nanoparticles, a conformal porous layer of inversely templated structure can be obtained in the PMMA surface. Characterization with atomic force microscopy shows that a variety of nanoporous surface morphologies can be achieved simply by controlling the duration and temperature of thermal annealing. The nanoporous surfaces consisting of either as assembled silica nanoparticles or templated inverse porosity in PMMA were compared in terms of their antireflective (AR) properties. Measuring AR properties provided a quantitative means to compare the stability of these porous AR surfaces before and after several cleaning cycles. Our results show that while both types of surface porosity can provide excellent AR properties (optimized for 300-400 nm), the porous layer generated by the "sink and etch" technique showed superior mechanical stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.