Abstract
AbstractA low‐voltage operable, highly sensitive, and selectively responsive polymer for the detection of nitroaromatic explosives is investigated. Resistive devices are fabricated by simple spin‐coating on flexible and transparent substrates in addition to silicon substrates and are stable under ambient temperature and oxygen levels before exposure to the nitroaromatics. After exposure to 2,4,6‐trinitrotoluene (TNT), the devices show increased conductance, even with picogram (pg) quantities of TNT, accompanied by a confirming color change from colorless to deep red. The relative conductance increase per unit exposure is the highest yet reported for TNT. Aromatic anion salts, on the other hand, do not induce any electronic responses. 1H NMR and microscopic analyses show chemical interactions and morphological changes correlated with the electronic responses, some of which are specific to TNT in relation to other nitroaromatics. The binding constant for the imidazole rings and TNT is on the order of tens of M−1. The materials are promising for rapid indication of exposure to nitroaromatic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.