Abstract
The composite materials based on graphitic carbon nitrides (g-C3N4) are remarkably better semiconductors, but the inherent photocatalytic performance in its generic synthesis form is not up to the mark. Eminence efforts have been made to improve its performance and photocatalytic efficiencies. Recently, extensive investigations have been performed to develop their texturally modified and highly porous structures to get around the big flaws of bulk g-C3N4. One significant disadvantage is the increase in the polycondensation while preparation at 550°C results in g-C3N4 materials with restricted specific surface area (SSA) (<10m2/g) and no textured pores. Textural modification has emerged as an efficient and progressive way to improve optical and electronic characteristics. The final texture and shape of CN are influenced by the precursor's interaction with the template. Researchers are interested in developing CN materials with high SSA and changeable textural properties (pore volume and pore size). Based on the literature review it is concluded that the soft templating approach is relatively simple, and straightforward to induce textural changes in the g-CN type materials. This review focused on improving the textural properties of bulk g-C3N4 via templating method, and the major advances in the modified g-C3N4 materials for the treatment of wastewater. The procedures and mechanisms of numerous approaches with varying morphologies are thoroughly explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.