Abstract

Lanthanide coordination polymers were synthesized from Pr(III), Nd(III), and Gd(III) salts; 2-hydroxynicotinic acid (Hnica); and MnSO 4.H 2O under hydrothermal conditions. In the absence of (CH 3) 3CCOONa, 1D polymers with an infinite Ln(III)-O-Ln(III) chain structure, [Pr(Hnica)(H 2O) 2SO 4] n ( 1), [Nd(Hnica)(H 2O) 2SO 4] n ( 2), and [Gd(Hnica)(H 2O) 2SO 4] n ( 3), were generated. When (CH 3) 3CCOONa was added to the synthetic systems, 2D coordination polymers {[Pr 3(Hnica) 6(H 2O) 9].3H 2O.SO 4.NO 3} n ( 4), {[Nd 3(Hnica) 6(H 2O) 9].3H 2O.SO 4.NO 3} n ( 5), and {[Gd(Hnica) 2(H 2O) 2]ClO 4.H 2O} n ( 6) were obtained. Complexes 4 and 5 both exhibit Kagome lattice structure, while 6 displays a rhombic grid structure. All complexes were characterized by elemental analysis, IR spectra, UV-vis spectra, and X-ray single-crystal diffraction. The variable-temperature magnetic susceptibility studies reveal ferromagnetic interactions between gadolinium(III) ions in 3 and 6 and antiferromagnetic interactions in 1, 2, 4, and 5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call