Abstract
Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-DHTA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO2 templates play an important role in the formation of well-defined NH2-f-SiO2@COFTTA-DHTA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO2 cores of NH2-f-SiO2@COFTTA-DHTA. Both the NH2-f-SiO2@COFTTA-DHTA and COFTTA-DHTA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.