Abstract

The investigation of large and flexible macrocyclic compounds has garnered significant attention due to their functions as host molecules and linkers. Although the synthetic yields of such compounds, achieved by linking two molecular fragments, are often hindered by the flexibility of the molecular skeleton, one of the effective solutions is template synthesis for the macrocycles. In this study, a novel template synthesis for disilacycloalkanes by leveraging the reactivity of a siloxane bond was investigated. The yields obtained through the template methods surpassed those of the nontemplate approach, and the introduction of substituents to the silicon atoms was also accomplished with success. All of the resulting disilacycloalkanes crystallized exceptionally well, enabling their structural determination through X-ray crystallography. Notably, the stability of these structures was elucidated by analyzing dispersion forces between alkyl chains, using density functional theory (DFT) calculations. This template synthesis method demonstrates its efficacy in synthesizing molecular systems that encompass two functional moieties linked with macroalkanes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.