Abstract

We report the room temperature template synthesis of CuInS2 nanocrystals through incorporation of Cu+ cations into In2S3 nanoplates whose chemical composition has been controlled by varying the amount of copper ions in the reaction mixture. As a result, bandgaps of the resultant CuInS2 nanoplates can be tuned from 1.45 to 1.19 eV with [Cu]/[In] molar ratios increasing from 0.7 to 2.9, which was demonstrated by the cyclic voltammetry. We explored the use of CuInS2 nanocrystals as potential counter electrodes in dye-sensitized solar cells, and a power conversion efficiency of 6.83% was achieved without selenization and ligand exchange. The value is comparable with the performance of a control device using Pt as a counter electrode (power conversion efficiency: 7.08%) under the same device architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.