Abstract
Filamentous ribbon-like structures of highly disordered carbon of thickness 10–100 nm built from merged individual carbon nanofibers were synthesised by chemical vapour deposition from saturated ferrocene–benzene solution at 950 K. The materials obtained were characterized by electron microscopy, x-ray and electron diffraction, Raman spectroscopy and a possible growth mechanism for their formation was proposed and discussed. The synthesis demonstrates the possibility of a template growth of carbon nanomaterials and supports the vapour–solid–solid growth model of carbon materials because the catalysing metal particles are solid under the experimental conditions. Due to the large number of structural defects, filamentous structure, submicrometer thickness and low intraparticle diffusion of the nanomaterials, they can find application in catalysis as catalyst supports and sorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.