Abstract

Nucleic acid "lariats" have been of great interest to the biological community since their discovery two decades ago as splicing intermediates in the biosynthesis of messenger RNA (lariat RNA introns). We report here the first synthesis of lariat DNA and RNA via template-mediated chemical ligation of Y-shaped oligonucleotides. The method allows for the synthesis of lariat DNA of any base composition as well as the more biologically relevant lariat RNA. Typically, branched precursors and complementary linear templates ("splints") were dissolved in an equimolar ratio at a total concentration of 10(-4) M, and ligation was promoted by addition of cyanogen bromide in a pH 7.6 buffer. The template-directed cyclization was very efficient, since the amount of circularized lariat product observed in all cases was in the 40-60% range. The lariats were purified by polyacrylamide gel electrophoresis, and their structure and nucleotide composition confirmed by MALDI-TOF mass spectrometry. Thermal denaturation and circular dichroism studies of lariat:RNA and lariat:DNA duplexes were fully supportive of the isolated "lasso" structures. Further characterization was conducted by enzymatic degradation with spleen phosphodiesterase (a 3'-exonuclease) and the RNA lariat debranching enzyme, a specific 2',5'-phosphodiesterase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call