Abstract

Graphite carbon nitride (g-C3N4) has great potential to treat antibiotic wastewater, but limited by small specific surface area, rapid recombination of photogenerated carriers and narrow visible light absorption range. In order to solve above problems, we designed a simple template-mediated approach by supramolecular self-assembly (Cu-melamine-cyanuric acid) to prepare copper doped porous graphitic carbon nitride (Cu-pCN) photocatalyst. The pre-organized template self-assembly driven by hydrogen bonds and electrostatic interaction, resulted in highly porous structure. The specific surface area of Cu-pCN increased to 142.8 m2/g from 11.37 m2/g of conventional bulk g-C3N4. In addition, the doping of Cu endowed them with better light absorption, higher separation and transfer rate of photogenerated carriers. Consequently, the obtained Cu-pCN displayed the superior photocatalytic degradation rate for tetracycline (TC) and high recycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.