Abstract
A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.