Abstract

We report on the directed self-assembly of sub-10 nm gold nanoparticles confined within a template comprising channels of gradually varying widths. When the colloidal lattice parameter is mismatched with the channel width, the nanoparticles rearrange and break their natural close-packed ordering, transiting through a range of structural configurations according to the constraints imposed by the channel. While much work has been done in assembling ordered configurations, studies of the transition regime between ordered states have been limited to microparticles under applied compression. Here, with coordinated experiments and Monte Carlo simulations we show that particles transit through a more diverse set of self-assembled configurations than observed for compressed systems. The new insight from this work could lead to the control and design of complex self-assembled patterns other than periodic arrays of ordered particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.