Abstract

To enhance the visible light photocatalytic activity for the degradation of organic pollutants, this study focused on the synthesis of flower-like BiOBr/microcrystalline cellulose inorganic–organic hybrid photocatalysts by one-step facile method at room temperature and used microcrystalline cellulose as template and support. Findings reveal that the band gap energy (Eg), the valance band (EVB) and conduction band (ECB) edge potential of the hybrid photocatalysts are 2.71 eV, 3.00 eV and 0.29 eV, respectively. Also, the synthesized catalyst degraded Rhodamine B (RhB) solution under visible light and the active species was found to be mainly photogenerated holes. Moreover, the photocurrent density of the synthesized hybrid photocatalyst is higher than the pure BiOBr under visible light. The average pore diameter of the resulting hybrid photocatalyst stood at 43.72 nm. Overall, a novel flower-like hybrid photocatalyst has been synthesized and it has exhibited an effective activity in RhB dye degradation with the multiple reflections under visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.