Abstract
The metallophilic properties, spherical configuration, and flexible coordination of silver ions make them prone to create various coordination modes and structural features. Therefore, with the increase of the complexities of self-assembly, the effect of various synthetic conditions in the final structure of silver compounds becomes diverse and attractive. In this study, two new silver polyclusters, 16- and 21-nuclearity, protected by multiple ligands including alkynyl, trifluoroacetate, and diphenylphosphinate, were synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and Fourier transform infrared (FTIR) spectroscopy. The optical properties and thermal stability of the polyclusters were studied by solid-state ultraviolet-visible (UV-vis) absorption and solid UV-vis diffuse reflectance spectra and gravimetric analysis, respectively. The formation of the two polyclusters can be fine-controlled by simply adjusting the stoichiometric ratio of diphenylphosphinate ligands to silver precursors under the same synthetic condition, leading to the different coordination modes between ligands and Ag centers. This work shows a facile and template-free method to synthesize and control the silver polycluster assembly, encouraging further development of new polyclusters with the potential for various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.