Abstract

Hematite is a promising semiconductor candidate for PEC water splitting. However, hematite is far well short of the theoretical value of solar-to-fuel conversion efficiency because of the fast recombination of photogenerated carriers. To address this limitation, a facile template-free preparation of hematite photoanode with nanostructured ATO (antimony-doped tin oxide) conductive underlayer served as a scaffold to transport photogenerated electron was developed to decrease the recombination opportunities of the carriers. Furthermore, the constructed ATO scaffold could also increase the light absorption of hematite and the number of the carriers, resulting in better PEC performance of hematite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call