Abstract

Three-dimensional hierarchical boehmite hollow microspheres with a very high yield at low cost were successfully synthesized via a one-pot template-free solvothermal route using aluminum chloride hexahydrate as precursor in a mixed ethanol–water solution with assistance of trisodium citrate. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption/desorption techniques. The results show that Cl− and addition amount of trisodium citrate have significant effect on the morphologies of the resultant products, and 6–8 mmol of trisodium citrate is optimal for the synthesis of boehmite hollow microspheres assembled from randomly interconnecting and aligned nanorods with solvothermal time no less than 15 h. A synergistic mediation mechanism of citrate ions and Cl− to form boehmite hollow spheres via self-assembly morphology evolution was proposed based on the experimental results. Interestingly, the typical boehmite hollow microspheres with a surface area of 102 m2 g−1, pore volume of 0.37 cm3 g−1, and the average pore size of 14.6 nm show superb adsorption properties for Congo red with maximum capacity of 114.7 mg g−1 which is higher than that of a commercial boehmite. This simple synthetic route is a very promising way for the design and synthesis of new functional hierarchical nanostructured materials with desired adsorptive properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.