Abstract

The self-assembly of protein polymers is a promising route to prepare sophisticated functional nanostructures. However, the interplay between protein self-assembly by itself and its co-assembly with a template is not well understood. Silk-based protein polymers that co-assemble with DNA to form rod-like artificial viruses are herein developed and the effects of silk block length, concentration, and temperature in the self-assembly of the proteins alone are characterized by using a combination of bulk dynamic light scattering (DLS) and single-molecule atomic force microscopy (AFM). Protein nanorods were slowly formed (up to hours) through the interaction of the silk-like blocks. The proteins present a silk-length dependent critical elongation concentration, and above it the amount and size of nanorods rapidly increase. Temperature-dependent light scattering data was adequately fitted into a cooperative model of nucleation-elongation. These results are also important to understand the self-assembly of designed viral coat proteins with DNA templates to form artificial virus-like particles and help us to define general guidelines to design proteins with the ability to precisely organize matter at the nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call