Abstract

Thermoelectric bismuth telluride nanowire arrays have been synthesized by direct-current electrode-position into porous anodic alumina membranes both galvanostatically and potentiostatically. The as-synthesized Bi2Te3 nanowire arrays are highly ordered in large area, stoichiometric, uniform, with high aspect ratio (above 100) and high filling ratio (>90%) of the membrane. The effects of different electrochemical deposition parameters on crystal structures, morphology and composition have been investigated. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) have been used to characterize the physical and chemical properties of the nanowires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.